Report identifies the trends impacting the world’s food systems today and tomorrow
By Sean Tarry
There’s no debating the seriousness of the challenges facing the preservation and optimization of today’s global food systems. Ranging from shifting consumer demand and production and supply alterations to economic instability and environmental changes, to name a few, the factors influencing the health of global food systems are plentiful, and their impacts immense. In light of the critical need to develop solutions meant to address these challenges in a move toward a climate-smart, healthy food system, S2G Ventures recently released a report titled Trends Shaping the Future of Food in 2023, highlighting the 10 most significant potential drivers of positive change.
1. Robotics
While many industries have been experiencing labour shortages over the past couple of years, few have been harder hit than the agricultural sector. And, looking ahead, it doesn’t seem likely to improve. In fact, according to a recent report from RBC, current labour shortages aside, an estimated 40 per cent of Canada’s farmers will retire within the next 10 years. To combat the issue, and to provide a much-needed bolstering of necessary field work, the use of advanced technologies is on the rise, leveraging innovations in computer vision, navigation, artificial intelligence, robotics, and chemistry, as well as soil and plant sciences, to support the future of crop production.
2. Digitization
In addition to their use in augmenting and enhancing field work through the digital execution of manual labour tasks, advancements in technology are also presenting the agricultural industry with the opportunity to not only increase yield and return, but to better manage their impact on the environment. And, with the introduction of ground truth measurement tools, including sensors, satellites, and GPS systems, paired with modeling, prediction, and estimation applications, farmers are provided with greater visibility into their operations every day, enabling precision strategy and optimized production.
3. Alternative Inputs
The negative impact of synthetic fertilizers and pesticides has been understood for some time, making it a priority for many within the industry to move away from their use toward a range of alternative inputs. Currently, resulting from a combination of skyrocketing prices for synthetic fertilizers and pesticides and increasing public demand for safer, environmentally friendly products, the use of alternative inputs, from biofertilizers to chemical stimulants, has increased significantly. And, as government regulations meant to protect the environment continue to tighten, the use of alternative inputs is expected to rise accordingly, sparking greater innovation and product effectiveness.
4. Optimization
The global supply chain is complex enough on a good day. But, when considering the disruptions that have occurred over the past couple of years, including intermittent port congestion and closures, military conflict and unprecedented inflation, to name a few, the need for a rethink is obvious. By leveraging the latest advancements in machine learning, artificial intelligence and predictive analytics, agricultural producers have the opportunity to access an incredible amount of data and information that can be used to optimized their supply, from farm to fork. And, in doing so, the industry can dramatically reduce negative impacts of the global supply chain on the environment.
5. Decentralization
As food insecurity continues to become a bigger concern around the world, the need to ensure a more resilient food system is increasingly required. And, with the threat of agricultural food shortages becoming more commonplace, often dependent on environmental conditions, many throughout the industry are considering the decentralization of their production. Several types of technology-enabled growing systems, including cellular agriculture, controlled environment agriculture, and land-based aquaculture are allowing farmers to diversify their yields with output that’s much less susceptible to environmental conditions, thus helping to alleviate food insecurity.
6. Food Waste Solutions
Given the direct and obvious correlation between food insecurity and food waste, the development, introduction, and adoption of food waste solutions are becoming critical in order to solve a host of problems and challenges that we all face. It’s another area presenting huge opportunities to leverage data fuelled by machine learning and artificial intelligence to tighten and hone buying practices, thereby providing greater control over production and the amount of food that’s wasted.
7. Sustainable Packaging
As the petroleum-based non-biodegradable plastics that are used within the majority of today’s food packaging continue to present detrimental impacts on the environment, increasing pressure is being placed on food manufacturers and their suppliers to rethink their packaging choices. As a result, a range of different bioplastics have emerged as much more sustainable alternatives to their petroleum-based predecessors. In addition, many companies throughout the industry are now beginning to form partnerships in efforts to start upcycling plastics for circular applications, reducing the industry’s reliance on plastic and improving its impact on the environment.
8. Novel Ingredients
There remains rising consumer interest and demand around plant-based foods as alternatives to meat. But many producers of plant-based products still struggle to offer the taste, smell, and texture that consumers are used to with respect to animal proteins. In addition, long ingredient lists and questionable nutritional content are eliciting criticism. However, the fusion of food science, molecular biology, and powerful artificial intelligence is enabling the discovery of natural ingredients, formulations, and the ability to reverse engineer foods from the molecular level, resulting in the advancement of novel ingredient development and continued upward trajectory of food innovation.
9. Cultivated Protein
According to the World Economic Forum, the global demand for meat is expected to double by 2050. Given the state of today’s livestock system, which has resulted in resource depletion, land degradation, exorbitant GHG emissions, and animal welfare issues, it seems unlikely that farmers will be able to produce enough product to meet consumer demand. It’s a situation that’s leading to a rise in the development of lab-grown products that are, by all accounts and purposes, biologically identical to animal products without requiring the slaughtering of animals. Currently, the cost associated with the development of lab-grown product remains a significant barrier to mass adoption. However, as momentum behind the technology and the need for its use builds, cultivated proteins will slowly move from trend toward general practice.
10. Convergence of Food and Healthcare
The COVID-19 global pandemic accelerated and facilitated a number of trends, including an intensified focus and concern around personal health among consumers. As a result, there has been a concurrent rise in the notion of food as medicine. As consumers show an increasing penchant to improve and optimize their health, it’s resulting in increased investment into research related to the discovery of new foods and the uncovering of previously unknown compounds and health benefits, positioning food front and centre when it comes to measures and efforts to prevent chronic disease and improve health outcomes.
As we move forward, the challenges that the agricultural sector face are clear. What’s just as clear, however, is the fact that the resources, innovations, and ideas that are necessary in order to help address and overcome these challenges are readily available. And, backed by advancements in technology, they could lead to an industry that’s more efficient, profitable, and sustainable than ever before imagined.
For more information about S2G Ventures’ Trends Shaping the Future of Food in 2023 report, visit www.s2gventures.com.